
N87-16769

1986

NASA/ASEE SUMMER FACULTY FELLOWSHIP PROGRAM

MARSHALL SPACE FLIGHT CENTER

THE UNIVERSITY OF ALABAMA

BENCHMARKS OF PROGRAMMING LANGUAGES

FOR SPECIAL PURPOSES IN THE SPACE STATION

Prepared by:

Academic Rank:

University and Department:

; _IP I_1"1 t I ISFC.

Laboratory:

Division:

Branch:

MSFC Colleagues:

Date:

Contract No.:

Arthur Knoebel

Professor

New Mexico State University

Information and Electronic

Systems

Software and Data Management

Systems Software

John W. Wolfsberger
Robert L. Stevens

August 1 1986

NGT 01-002-099

The University of Alabama

XXVII

BENCHMARKSOF PROGRAMMINGLANGUAGES
OR SPECIAL PURPOSESi THE SPACE STATT_'

by

Arthur Knoebel
Professor of Mathematical Sciences

ABSTRACT

Although Ada is likely to be chosen as the principal

programming language for the Space Station, certain needs,
such as expert systems and robotics, may be better developed

in special languages. This report studies the languages,
LISP and Prolog, and draws up some bench marks for them.
It starts off by reviewing the mathematical foundations for

these languages. How this works out in practice is

examined briefly. Likely areas of the space station are
......k_ out where automation and robotics might be

applicable. Benchmarks are designed which are functional,
mathematical, relational, and expert in nature. The coding

will depend on the particular versions of the languages

which become available for testing.

ACKNOWLEDGEMENTS

Making this summer fellowship successful for all the

visiting faculty involved, of necessity, the close

cooperation of many people. I myself would like to single

out eight of these: my counterparts, John Wolfsberger and
Robert Stevens, for their helpfulness; the coordinators of

the program, Michael Freeman and Ernestine Cothran, for

making it run sm0otbly; immediate supervisors, Walter
Mitchell and David Aichele, for their interest; and higher

Lip, Jack Lucas and Gabriel Wallace, for their efforts beyond
the call of duty in arranging worthwhile tours.

XXVII-i

TABLE OF CONTENTS

Introduction

Statement of Problem

Four Ways to Choose

a Language
Objectives

Background in Logic

Pure and Applied Logics
Functional Calculi

Explicit and Implicit

Algorithms

Candidate Languages
LISP

Prolog

Theoretical Comparison

Automation and Robotics

Artificial

Intelligence
Caveats

Expert Systems
Robotics

Space Station
Overview

Tasks for Sophisticated
Procedures

Tasks for Expert

Systems
Matrices

Benchmarks

Functional

Ackermann

Polynomial
Series

Mathematical

Fourier

Derivative

Boyer
Relational

Triangle
Traverse

Database

Expert
Browse

LOX

Power

Other Considerations

Examples from Robotics

Observing Programmers
Other Characteristics

Ada

Conclusions and

Recommendations

References

XXVII-ii

_NTRODUCTION

Statement of Problem. The idea of establishing a

colony of humans somewhere beyond the earth goes back in
fanciful forms to antiquity, takes a more realistic turn

earlier in this century, and now assumes many of the

features already present in the sketches of von Braun. The

first realization of this concept was finally achieved by

the Soviets when they launched Salyut in 1971; this space

station has been in use, on and off up to the present day,

with a recently completed tour of duty for the astronauts of

record-breaking length. Sky Lab, the second space station,

was put in orbit by the U.S.A. in 1973, used off and on into

early 1973, and sometime later disintegrated ignomineously

over western Autralia. President Reagan, in his inaugural

address of 1984_ gave new life to this old notion,

announcing that the United States was committed to

henceforth designing and building a brand new space staion,

and putting it into orbit by the mid 1990's. With this
fresh start come fresh decisions to be made about every

facet of space voyage, discovery, and habitation.

r_aying _,, important _I del_k=_a+ions will-- ._e In these

be many questions about the software that goes with the

Space Station. Software is often called the glue that

holds modern technology together. Already intensive debate

has started on what kind of software should be developed for

the Space Station, and how.

The first question to answer is what language, or

languages, should software be written in. Heretofore at

NASA, the principal languages have been FORTRAN, HAL/S and

assembly, as well as a handful of many others used only

slightly. How to choose among all of these was the topic

o$ my report of last summer [Knoe]. Since that time it

seems rather certain that Ada, a fairly new and relatively

untried language, will be chosen.

Given that, there still remains the second unanswered

question as to whether Ada should be the only language

allowed, or whether other languages should be allowed for

special puposes, such as, expert systems, robotics and

perhaps other tasks demanding exotic algorithms. Two

typical languages that ought to be considered along this

line are LISP and Prolog. This is the principle topic of

my investigation.

XXVII-1

Four Ways to choose a Proaramminqan__. There are

many ways to choose a language. How we go about this

depends on what we want to program, on whether we want to
use an existing language or design a new one afresh, and how

many resources we have to spend in comparing. Since the
coding for the Space Station is to start within a couple of

years, we are constrained to choose among existing languages

which are fully defined, and now have or will shortly have a

software development environment. Last summer I surveyed

four methods for comparing languages already at hand; these

were theoretical, by matrices, with benchmarks, and through

observing programmers. We will now briefly describe these.

Toward the end of this report, we will consider how the

languages we are going to look at satisfy other criteria

proposed for designing languages.

The theoretical method of comparing programming

languages is to use the definitions of the languages to find

out which is better by trying to calculate relative speeds,

memory requirements, and extent of equivalence. Programs
themselves are not run. For- LISP and Prolog, where

combinatorial search strategies often lead to exponential

orowth in time mnd m_mnry _hS= _._,,I_ ===m to _ _n

important study to do. Surprisingly, there is little done

along these lines, either for these two languages, or in

general (e.g., [Haw]).

In the matrix method, one firsts constructs a matrix

with the tasks to be performed going down the left side and

the languages to be examined going across the top. In the

body of the matrix will be estimates of how good the matches

are. In practice, usually two or more matrices are used;
see [Knoe].

Benchmarks will be the principle method examined in

this report. Programs are written to test a variety of
features needed to accomplish certain tasks, and then run in

a variety of languages on an assortment of machines.
Results are compared and the best language wins. This

method, despite its straightforward appeal, is not as easy

to apply as it migh t appear, as we shall see in the sequel.

Observing programmers speaks for itself. By setting

programmers to work actually writing code for assorted tasks

typical of what we want to do, we can gather statistics on
the relative ease of programming in one language versus

another, how likely are mistakes to be made, and how easy it

is to maintain the code. By itself this method can be

quite expensive.

XXVII-2

This report is organized somewhat differently from that

of the previous summer. As benchmarks will be the principal
.... ,i,,, _4,- _ t" _ l,,,v, ._r'lcriterion +or aistingui_hir, y yuu_ _,,,_=0.........w._n_ .r_ ,

we relegate discussion of the other criteria to single

paragraphs in other sections where they most naturally come

up. Theoretical methods are at the end of the section on

languages; matrices at the end of the Space Station section;

and observing programmers in the section on other
consi derati ons.

Objectives. Our objectives are three in number.

I) Describe the candidate programming languages, LISP and

Prolog.

2) Find nontraditional tasks in the Space Station which

might fruitfully use these languages.

3) Establish benchmarks.

BACKGROUND IN LOGIC

The two principle languages we shall consider are

firmly based on well-defined logics: LISP on the lambda

calculus, and Prolog on the first-order predicate calculus.

Therefore, we briefly describe these calculi and related
systems before describing the languages themselves. This

chapter closes with a comparison of implicit and explicit

algorithms.

Pure and Applied Loqics. Propositional calculus
[Mend] is the oldest mathematical logic, invented in the

last century by Boole. In this calculus the atomic
entities with which we work are sentences, which will not be

decomposed nor analyzed any further. The only attribute of
them which we use is their truth value. Thus may we

abbreviate the sentence, _Mary likes John', by the symbol

P, and the sentence _John runs away.' by Q. We assume
both P and Q have truth values, but they may not be known to

us. These sentences may be combined with what are called

logical connectives: for example, P & Q, i.e., _Mary likes

John, and John runs away. _ An important connective,

material implication, yields a sentence like P => Q, i.e.,

_I÷ Mary likes John, then John runs away.' This connective,

=>, is the backbone of Prolog syntax, to be explained

XXVII-3

later. It is called material implication since in everyday

English, _If-then" statements often imply semantical cause

and effect, whereas our logical implication is defined
strictly in terms of truth values by a truth table:

T F
T _ T F
F _ T T

Compound statements are possible, for example, (P & Q) => S,
where S might be, say, 'Mary likes Sam.' The algebraic

study of selected connectives is called Boolean algebra, and

it plays a crucial role in the design of digital circuits.

Predicate calculus [Mend] is based on the propositional

calculus, and is obtained from it by introducing individuals

and allowing the logic to recognize some limited internal

structure within the propositions, namely, they may be

relations, i.e., predicates over individuals. For example,

the relation among numbers of 'less than' is a binary

predicate. An instance of this would be 3 < 5; but we

also have more generally x < y. Predicates may have any

number of arguments, p,_n_=_= a_ .i_- - part of _L

predicate calculus: _for all x' and 'there is an x'.
Introducing M(x) for "Mary likes x', and R(x) for _x

runs away _, and also N(x) for _x is a man', we may

paraphrase the formula,

For all x, M(x) => R(x),

as *Any man that Mary likes always runs away _.

Typically, for each of the two calculi introduced so

far, a finite number of axioms and rules of inference are
formulated which capture exactly the nature of the these

logical structures, and nothing else. Such logics are
called pure. If we add axioms asserting something about

the world beyond its purely logical aspects, then we have

what is called an applied calculus. For example, if the

previous formula,

For all x, M(x) => R(x),

is added as an axiom, expressing the fact that Mary scares
men away, then we would have an applied calculus. An

important applied calculus which everyone has met is

Euclidean geometry. Another is axiomatic set theory, which

is important since it serves as a foundation for
mathematics.

Both of these pure calculi have the desirable

metamathematical property of completeness: any formula
which is true is always provable from the axioms. This

implies in turn that these systems are decidable, i.e.,
there is an algorithm, programmable on a digital computer,

XXVII-4

if you like, which takes a single formula as input and gives
as output whether this formula is true or false, or
equivalently, provable or not. Unfortunately, applied
systems may not be complete and decidable. In fact, Kurt
Goedel showea on the contrary that _l,y =y=c=,,, _,, =,,_., _w
define the integers will, of necessity, contain formulas
which are undecidable. This will have important
consequences for our discussion of the limitations of
artificial intelligence, to come in a later chapter.

Functional Calculi. We first look at the lambda

calculus [Curry], which is built out of two simplebut

powerful constructs. The first is functional evaluation,
f(x). Since everything in this calculus is considered to

be a function, regardless of its purpose, any two objects

may be combined in this way, for example, also x(f). The
other construction is used for defining new functions,

lambda x e(x), where e is some expression in the calculus

constructed out of objects already available. This

expression yields a new function, which, when evaluated,

say, f(a), gives the expression e changed by replacing

x by a. With the lambda construction, all sorts of new

functions may be created. In fact, this extraordinarily

small calculus is quite capable of defining the integers and
much more. This all assumes that one has formulated the

natural axioms and rules of deduction, which we do not have

-,,=space to do here.

There is another functional foundation for mathematics,

the category theory, which is quite different from the
lambda calculus. Its fundamental primitive is composition

of functions, rather than evaluation. Again everything is

a function, but there are constraints on when functions may

be composed. Although many mathematicians feel category

theory is the most natural foundation for doing mathematics,

surprisingly no programming language has been built around
it.

Explicit versus Implicit Alqorithms. Traditional

computer programs are procedural in the sense that every

step of the algorithm must be spelled out. In fact,

originally one had to code in assembly language. Now,

languages such as LISP and Prolog allow a programmer to

specify what is desired without having to give step-by-step

procedures. We can spot a trend here towards less and less

detailed recipes for accomplishing one's goals. Curiously,

just the opposite is happening in mathematics. Most

contemporary mathematicians are quite satisfied with an

axiomatic presentation of their subject, assuming that
whatever objects are needed do indeed exist, without a care

XXVII-5

in the world about how they might actually be constructed.
But there is a small movement afoot, called constructive
mathematics, which has as its aim the discovery and
development of algorithms for all classical definitions and
theorems which assert the existence of something. It is
ironic that while some mathematicians are moving from the
abstract to the concrete, computer scientists appear to be
moving in the opposite direction.

CANDIDATE LANGUAGES

In this section, we talk about LISP and Prolog. We

could have discussed other languages for similar purposes,
e.g., Smalltalk, Obj , Nial, but did not.

LISP. Pure LISP is based directly on the lambda

calculus. In theory, as a programming language, it is

equivalent in computing power to a Turing machine.

necessity tedious to code. For that reason a variety of
extensions are made, which lead to the applied LISP's (see
[Gab]).

All LISP's commercially available today have a central

core of pure LISP together with quite a few extensions, the

number and kind depending on the particular version. Most
have the integers defined, as well as conditional clauses

and loops. There is usually a programming environment

containing various debugging and program development tools.

How a LISP dialect is implemented is crucial. The

theory tells us that are two princiapl ways in which lambda

expressions may be evaluated. One always converges but can
be quite slow. The other is usually faster when it

converges_ but there is no guarantee that it will converge.
All implementations use one or the other; some both,
allowing the programmer to choose.

The two most important drawbacks of LISP are its slow

execution speed and extensive demands on memory. Two

interrelated hardware solutions have been proposed. The

first is to design digital computers for processing LISP

programs out of existing off-the-shelf chips. The second
is to design and fabricate new chips themselves [Line].

XXVII-6

Proloq. Prolog is based on the first-order predicate

calculus, but not directly. The only acceptable formula is
of the form

R1 :- $1, $2, ...
where Rlp R2_ , ..., 52, ..., 52 are reiations in

variables and constants. In our syntax of the predicate
calculus this Horn clause would read

($I & $2 & ...) => R1

That this drastically reduced syntax can express much of the

predicate calculus depends on three tricks:

i) there is implicit universal quantification, that

is, each Horn clause is universally quantified over all

variables occuring in it;

ii) existential quantification is achieved by the

judicious use of constants;

iii) sets of Horn clauses are allowed, which has the

effect of _and'ing them together.

A nice feature of Prolog is that it can prove statements and

answer questions. However, Prolog is not completely

equivalent in expressive power to the first-order predicate
calculus (cf. [HC]).

The execution of a Prolog program seeks matches of

symbolic patterns, and unifies them. Again we have a

_,,u_ce of algorithms f_ -'" _"_"_- _" - _
clauses, some slow but guaranteeing convergence, and others

fast when they terminate. The problem is particularly

acute in Prolog since some kind of backtracking while

traversing a tree is necessary in order to explore all
possibilities. Needless to say the demands on memory are

enormous. To help alleviate this problem, and to give

programmers some control over the course of exectltion, the

cut, a feature unique to Prolog, is to be found in every

version of Prolog.

Their are many dialects of Prolog, and [Camp] describes
some of their flavors.

One feature no version of Prolog has today is the

implementation of cyclical instantiation. This is a
somewhat technical substitution sometimes needed in the

theory to insure termination. It is not implemented

because run times would be much too long. Opinion has it

that this situation would never occur in real programs.

However, to me, it appears to be a condition that would

appear quite frequently in automatic theorem proving. In
view of the closeness, in theory, of the spirit of expert

systems with theorem proven, one has to wonder how valid

current implementations of Prolog are for work in artificial

intelligence.

XXVII-7

l

Prolog is the darling of the fifth generation project
in Japan [FM]. Rumor has it that Prolog was invented by

the Europeans and given to the Americans as a joke, but the

3apanese have yet to get the point. Certainly, a variety
of substantial problems with Prolog will have to be solved

before it can be widely used in reasoning systems. Chief

among these are its slow speed, its massive memory

requirements, and its extraordinary sensitivity to the order

in which clauses are presented.

Theoretical Comparison. All versions of both LISP and

Prolog should be equivalent in computing power to a Turing

machine, i.e., both can compute all partial recursive
functions. It would be nice also to have complexity

comparisons for both speed and space. See [GB] for a more

down-to-earth comparison.

AUTOMATION AND ROBOTICS

^-_ici -_ I_J_eiiiqence. This phrase refers to

efforts to program digital computers to do certain human

activities which require intelligence in the common sense
of that word. As such it is extraordinarily nebulous;

henceforth we avoid the term 'artificial intelligence _, and

instead talk about the specific human activities we are

trying tQ mimic by a computer. Examples might be playing

games such as checkers and chess, poker and bridge;
professional practice such as medical diagnosis and

treatment, engineering design, and preparation of law

brie4s; translating natural languages and nontechnical

interfaces between humans and computers; creative work such

as composing music and proving theorems.

It would be good to compare this list of undisputed

intellectual activities with what has already been
programmed. Very large databases now exist which can be

queried in rather sophisticated ways. There are numerical

algorithms for solving partial differential equations and

large systems of linear equations and inequalities, which

perform large numbers of arithmetic operations and make

decisions about many different kinds of branches in the

computation. Computer-aided design has become extremely

versatile, and indispensable in such _ields as very large-

scale integrated circuits on silicon chips. Packages, such

as Macsyma and MPS, can perform an amazing range of symbolic

manipulations, as, for example, indefinite integration well

beyond what even most mathematicians can perform

XXVII-8

straightaway. Are these examples of true intellectual
activity? Well, at one time, they would have been
considered so. That many no longer consider them
activities requiring the donning of one's thinking cap would
aooear to be a good illustration the of the fact that once
something is programmed, it is no longer considered
intellectually challenging, and hence not a true instance of
artificial intelligence . That is, once the glamour has
been removed by the hard binary code of success, our

attention shifts to tasks of the mind yet to be conquered.

Each of the successful programs just mentioned in the

preceding paragraph has, as a foundation, a mathematical

theory which guarantees that the algorithm will work as

expected. On the contrary, for the tasks enumerated in the

first paragraph of this section, there are no algorithms yet

known which will guarantee convergence of the coding in a

timely fashion. We say "timely _ since, for example, there
are complete axiomatic mathematical systems for which there

are exhaustive algorithms, too time consuming to use in

practice, but nevertheless they converge. Because there is

no theory underpinning the current efforts in artificial

intelligence, we should expect, as is typical in any

engineering enterprise without a firm foundation, slow

progress and few successes.

Caveats. Continually rising expectations by workers

in the field of artificial intelligence have led to inflated

claims. Listen to this quote from the book by Feigenbaum

and McCorduck: _In the kind of intelligent system envisioned
by the designers of the Fifth Generation, speed and

processing power will be increased dramatically; but more

important, the machines will have reasoning power: they will

automatically engineer vast amounts of knowledge to serve

whatever purpose humans propose, from medical diagnosis to

product design, from management decisions to education' [FM,

p.56]. By way of contrast, there have been very few clear

successes. We have the gloomy prognosis of the Dreyfus

brothers: _After 25 years Artificial Intelligence has failed

to live up to its promise and there is no evidence that it

ever will' [DDa, p. 42]. Their sobering critique [DDb]
documents this. See also [Bolt] and [Mart].

Among the better programs are Puff, R1, and LOX.

Puff, a diagnostic program for lung diseases, is correct

about 75% of the time; as such its principal use is to
shorten the time spent on preparing reports, when an

independent diagnostician verifies that what the system has
printed out is correct. R1 matches user requirements for a

new computing system with devices available from Digital

XXVII-9

Equipment Corporation; it is has proven successful, mainly
due to its power to sort through large numbers of
combinatorial possibilities. LOX, a creation of Kennedy
Space Flight Center [NAR, p. 27] creates tailor-made
drawings from a huge database about liquid oxygen pumping
systems. It is also designed to diagnose faults but it has
yet to be tried in that capacity. Larry Wos, at Argonne
Laboratories, has written a mathematical theorem prover
[AMS], which has interactively solved three small open
problems in abstract algebra. From all of this, it would
appear that in the near future the most likely successes
will be in interactive expert systems and mathematical
theorem proving. These two fields are closer together than
one might expect at first glance, since they both use
principles of resolution to solve systems of sentences and
symbolic equations.

Expert Systems. These are systems which reduce the
knowledge and experience of an expert to a collection of

rules, often in the form of Horn clauses. Inferences can

be made and conclusions deduced using these rules of _thumb'

in the framework of some deduction system such as LISP or
Prolog.

In analogy with Goedel's theorem in mathematical logic,

it is quite possible that the clauses defining an expert

system may not be complete; in which case it will be

impossible to answer all queries for lack of information.

This is a serious drawback. Since, typically in drawing up

an expert system, one has not done a complete logical
analysis as one would normally do in more conventional

procedural programming, there is no good way to detect
incompleteness.

Robotics. It is useful in the discussion to

distinguish two main areas of robotics. First there is

the present applications, such as welding parts of

automobiles together, which involve highly repetitive tasks

in a fixed and controlled location, based on a well

understood technology. The other kind is postulated to be

able to perform in the future a wide variety of tasks, such
as building a space station and repairing faulty parts in a

highly variable environment.

The first kind of robotics is, of course, now common in

a number of industries in various parts of the world. The
possibility of making the second kind work is based on a

nonexistent theory; it is certainly not an extrapolation of
the first kind.

XXVII-IO

The conclusion we should draw about robotics is that
any advances in the near future will be modest extensions of
what is presently done. In more advanced systems, close
human interaction and supervision will be the norm. See
• wnz1:- Tor _ d_k=Lii_uu_:Lu=:-u,, _T the: _==,.,=.

We summarize this whole section by noting that all

algorithms can be classified into four categories, graded

according to the increasing degree of _intelligence'

expected:

traditional procedural;

sophisticated procedural;

minimal expert systems_
unreserved AI.

In the next section we will take a closer look at some of

the tasks in the Space Station which will fit into the

middle two categories.

SPACE STATION

Overview. A permanent presence in space is the next

logical step beyond the present short missions, each

typically a week long. This is the rationale for the Space

Station, which is scheduled to be put into orbit in 1992 and

to last for twenty to thirty years. The completed space

station will consist of a number of modules for habitation,

experiments, and storage. In addition, there will be an
orbital maneuvering vehicle and orbital transfer vehicle for

moving satellites and astronauts between the space station

and a variety of orbits. It is anticipated that that

Space Station will be used for everything from zero gravity

experiments through servicing of satellites to the launching
of probes to the outer planets.

Computer programs will control and regulate all of this

and provide timely information. Because of its large size

and the long time it is expected to be in orbit, the Space
Station will need to be semi-autonomous to be economically

run. A special mandate was given by Congress to

incorporate automation and robotics as much as possible; ten

per cent of the budget for the Space Station is to be

devoted to such activities . Thus, it seems reasonable to

consider special languages which would be particularly
adapted to these tasks.

Timing is crucial. Without going into the details of

NASA's schedule for the Space Station, it suffices to note

XXVII-11

that detailed design is to begin early in 1987. Therefore,
whatever languages will eventually be used must now be
available, together with some base of experience in using
them.

We now discuss briefly some of the kinds of tasks
in the Space Station needing advanced programming
techniques. This is difficult since, as seen in the
previous section, the techniques of artificial intelligence
have seen very limited success. We describe only some of
those which will likely fall into one of the two middle
categories described in the last section; sophisticated, but
traditional procedural programming; and minimal expert
systems.

Tasks for Sophisticated Procedures. We see this as an

extension of present work along the following lines, where

further research and development into sophisticated

procedural programming will result in less people needed for

day-to-day operations:

Robotics, as for example, parts handling and assembly;

Fault monitoring and diagnosis_

Scheduling of power and load shedding;
Environmental control.

Tasks for Expert Systems. In view of the facts that

expert systems are best limited now to manipulating large

databases of information in conjunction with an expert, and

there can be at most eight experts on board, it would appear
that most applications of expert systems will be ground

based, for example, LOX, power systems, etc. Those

requiring little expertise but lots of combinatorial

searching, such as logistics, might well be in the space
station itself.

This is only a sampling. For many additional tasks

which will fall into these categories, look up principally
[AART2], and also [ARP], [Firs] and [NAR].

Matrices. We mention this method of evaluating

languages for specific tasks at this point, since it

depends on a detailed knowledge of the Space Station.

Basically, in previous evaluations (see [Knoe], pp. 13-14),

this method constructs two matrices: one to plot tasks

versus what is needed in the way of language constructs; and

the second to plot language constructs versus languages

under consideration. In the present situation, we would

recommend three matrices altogether, obtained by splitting

XXVII-12

the first one into two. The first matrix would now only
plot the matching of tasks versus successful paradigms in
automation and robotics; the intermediate matrix would plot

these paradigms versus potential language constructs.

BENCHMARKS

We now proceed to the central section of this report:

the creation of benchmarks for languages likely to be used

in automation and robotics. We split these up into four

categories: functional, mathematical_ relational and expert.

In each category are three benchmarks_ for a total of

twelve. After motivating each algorithm_ we describe it in

either English or mathematical terms. Some of these

algorithms have been coded into LISP and run, none into

Prolog. We leave the completion of the coding to a future

project.

Throughout this section we borrow freely from the book
of Richard Gabriel [Gab]. Some of the benchmarks of this

section are taken directly from his work. He has timings
for an impressive array of computing machines.

Designing benchmarks is tricky; we want sensitivity,

but a particular benchmark may measure something different

from what we want. Gabriel has much to say on this; here

is part of his summary (p. 275): _To claim that a single

benchmark is a uniform indicator of worth for a particular
machine in relation to others is not a proper use of

benchmarking Computer architectures have become so

complex that it is often difficult to analyze program

behavior in the absence of a set of benchmarks to guide that

analysis _. See also my previous report [Knoe, p. XXVI-12]
for other comments.

Another difficulty that arises in this study is that

the various implementations of LISP are different enough

from each other so as to require substantially different

coding of the same algorithm. Based on a different theory,

Prolog will magnify this problem even more.

Functional. Ackermann. The first algorithm comes

directly out of arithmetic: we assume all variables are

positive integers. It is named after a two-argument

function invented by Ackermann, which is doubly recursive

but not singly (= primitive) recursive. We give instead a

three-argument function which is easier to understand, but

XXVII-13

has similar properties..

To motivate it, first observe that multiplication may
be defined recursively in terms of addition:

m_$ l=m,
m $ (n + 1) = (m $ n) + m.

Similarly, taking exponents may be defined recursively in
terms of multiplication:

m _ 1 = m,
m $_ (n + 1) = (m $_ n) $ m.

These may be combined to yield a function
three arguments:

A(k, m, n) of

A(1, m, 1) = m + 1,

A(k, m, I) = m (k > 1),

A(k+l, m, n+l) = A(k, m, A(k+l, m, n)).

Note that this is a doubly recursive definition, and

needs only the successor function, m + 1, as a seed

• .._+ion. _-- _,,,_ll fixed values of k,....... _r we get the usual

arithmetic operations:

A(1, m, n) = m + n,

A(2, mp n) = m _ n,

A(3, m, n) = m _ n.

Thus A(k, -, -) itself may be considered to be a sequence

of progressively more involved binary operations. For

example, when k = 4, we get iterated exponentiation. The

number of iterations is determined by n, for example,

A(4, 2, 5) = 2 $_ (2 mS (2 _ (2 _ 2)))).

The obvious way to evaluate A(k, m, n) for specific

arguments is to start with both the first and third

arguments set to 1 and iterate to raise to the required

values. Unfortunately, as there is no way to predict a

priori how large the intermediate values will be, it is

necessary to work backwards and first map out the path of

computation. This can be quite long and involved, and

so this algorithm is good for testing the recursive

capabilities of a language.

Pol ynomi al.
three trinomial s:

This program computes specific powers of

XXVII-14

x + y + z + I ;

lO0,O00x + lO0,O:)Oy + lO0,O00z + I00,000 l

l. Ox + l. Oy + 1.0z + 1.0 .

The powers computed are the second, the fifth, the tenth,
lift th T; _ _"_and the een . i_ Luu=, _,,_,, _= ._.= _ =,

comes from Richard Fateman, and we are reporting from its

presentation in Peter Gabriel's book [Gab, p. 240]. The
meters show that the largest number of operations used are

those having to do with putting together and breaking up

lists. This may not seem surprising since we are using

LISP, a list processing language. However, quite roughly
less than half this number of arithmetic operations is

needed. Clearly, representing polynomials and manipulating

them is consuming lots of computing. The representation
used in this code is rather awkward, and I can't help but

wonder if this may not be slowing down the program.

Raw times for each polynomial and each power are

tabulated for a bewildering variety of machines and

dialects of LISP. This data, which runs for over 20 pages,

is a smorgasbord of food for thought. We content ourselves
with one observation on it. The number of LISP operations

executed for the fifteenth power is about seven times that

for the the tenth powers; this is reflected in some of

these statistics, but not all. For example, for a Cray

running Portable Standard LISP the CPU times for these two

powers are .95 s versus .14 s, a factor of 7. But why,
for the VAX 750 also running Portable Standard LISP, is it

82 s versus 4.5 s, a factor of about 14, which is almost

double?

Series. I propose the evaluation of the power series

for the exponential function as a simple test of the ability

of a compiler to sequence assertions so as to truncate the

series at the appropriate spot. Here exp(n,x) will be a

function of two argument: the first a nonnegative integer,
the second a real number. The assertions are

exp(O, x) = 1

exp(n, x) = exp(n - i, x) + t(n}
t(n) = (x _I n) / n!

:t(n + i): > It(n + 2) I

error = If(n + l)I

error < .01

x = -I0.

The first three lines define recursively the power series

for the exponential truncated at the nth term; the next

three lines, the allowable error. We invoke here the
theorem which says that if any alternating series has terms

XXVII-15

decreasing in absolute value, then it converges, and the
error is less in absolute value than the first term to be
truncated. Of course, the terms in our series for our
particular value of x grow initially; hence we need the
fourth condition above, which checks that the terms have
begun to shrink.

I have given these assertions in a form directly
translatable into Prolog. I don_t think LISP can handle
this, without substantial modification.

Mathematical. Under this heading, we present three

algorithms which make a variety of demands on the languages

being evaluated. The first one, a fast Fourier transform

tests the floating point capabilities. The second, which

calculates derivatives, demands symbolic manipulation. And

the third_ a theorem prover, asks for pattern matching and
lots of inferences.

Fourier. Written by Harry Barrow, this program out of

[Gab, p. 193] is a 1024-point_ comp!ex_ fast Fourier
transform. Almost two thirds of the operations consist of

what Gabriel, in his meter for this benchmark, calls

"hacking arrays of floating-point numbers _. The

mathematical virtue of decomposing a complicated problem
into simpler ones really shines in the FFT, as presented in

this meter: out of over three million LISP operations, only

200 are for computing trigonometric functions. Of course,

there are lots of multiplications. One might expect

general purpose machines to perform better on this than
machines devoted to LISP, but curiously this not the case.

This is seen in this brief excerpt of the CPU times for just

the Symbolics and IBM 3081, from Gabriel's tabulation of raw
times.

FFT Triangle

Sym. 3600 _ 4.75 152

IBM 3081 : 7.30 25

Oerivative. The first part of this program, as

reported in [Gab, p. 170], is a general program which takes

symbolic derivatives of polynomials. The second part is

specialized to taking the derivative of a specific quadratic

5_000 times, in order to get reliable run times. In it the

most frequently used operation of LISP is the CON_s

operation for concatenating lists. Unexpectedly, from

Gabriel's timings_ we see that the IBM 3081 edges out the

XXVII-16

Cray on this benchmark. Also, the spread of timings over
all the machines examined appears to be less than that for
many oT the other benchmarks. Without looking at the
execution in more detail, it is hard to know what to make of
these anomalies.

Boyer. Ostensibly this is a theorem prover.
Reluctantly, I include this benchmark from Gabriel's book,
and the reluctance is for three reasons. First, on page
129 in the analysis section, in the set of five statements
to be proven, there is clearly an undesirable mixing of
types: the function f must operate on both numbers and
lists of mixed objects. Although thismay technically be
allowable in the particular LISP under consideration,
intuitively I feel that the implication to be proven should
be thrown out on grounds that it is meaningless. Of
course, if one only looks at the compound implication
itself, then it is a tautology. And it might be accepted
by some theorem provers on that ground alone. But shouldn't
a really good prover reject sets of statements which are
inconsistently typed as data?

Second, these five statements I_m quibbling about are a
botched up and substantially incorrect translation into
everyday technical prose of that portion of the code which
h,, come from on _he previous oaoe of Gabriel's book.
(Even if translated correctly this would not invalidate the
first objection.)

Third, the LISP program itself runs 13 pages with nary
a comment; the definition of the setup function which does
the rewriting of expressions is 9 pages just by itself.
Moreover, clauses for the same operator are scattered about
in no apparent order, so it is hard to verify the content of
the operator's definition.

Why then, should one look at this particular benchmark
at all? Well, some benchmark in theorem proving must be
considered, either this or some other program. Suitability
for pattern matching and unification is crucial for any
language in AI. Perhaps one should look through the
symposium [AMS] of the American Mathematical Society for
some better examples of theorem proving.

Relational. These three benchmarks are grouped

together here since they can, and should be, coded in some

kind of relational data type. The ability to handle
relational structures efficiently and quickly is the

hallmark of an intelligent programming language. But, as

XXVII-17

we shall see in the first example below, this is not always
the case.

Triangle. This is a simple puzzle played on a
triangular board with 15 holes and 14 pegs, and sometimes
found on tables of restaurants, for patrons to while away
the time while waiting for their food. A peg may be jumped
over another one, as in checkers, providing the landing spot
is empty; the peg jumped over is removed. The object is to
find a sequence of jumps so that one ends up with only one
peg. If, to begin with, one of the three inner holes is
empty, then Gabriel, [Gab, p. 219], claims there are 775
solutions; but this number is suspect, since by symmetry
there should be an even number of solutions,

Once one has forced the two-dimensional triangle into
one-dimensional arrays, the actual writing of the code in
CommonLISP goes quite naturally. The CPU times run all
the way from 14.44 s on the Cray, which is usually the
winner in all of Gabriel's bench marks, to 2,866 s on a
VAX 730. On all of the VAX_s for which code was run,
Portable Standard LISP is almost twice as fast as Common
LISP. Code for InterLISP is also given, but curiously it
is almost twice as long as the code for CommonLISP.

We comment further on Gabriel's _data structure _ for
the triangle with five holes on a side. This is
represented as a vector of length fifteen; to code possible
jumps requires three more vectors of longer length, whose
entries require some hand computation to determine. A much
more natural data type would use barycentric
coordinates on the triangle. Possible moves could then
easily be calculated from these coordinates. Also, it
would now be much easier to scale up from a triangle with 5
holes on a side to one with, say, 10. The only difficulty
with this is that LISP has no provisions for the
specification of abstract data types such as this. In the
final section, I will have more to say about this.

Traverse. This program appears in [Gab] on p. 153,
and is called _traverse' there. It utilizes the record,
the least structured data type of LISP, to build a tree at
random, and then traverse it. The tree has 100 nodes, and
each node is a record with 10 slots for information about
parents and sons, and other facts.

Again, in the run times there is a surprise. This
time, the VAX 730, running CommonLISP, is not behind
everyone else; it has edged out the Zerox Dolphin for the

XXVII-18

initialization part of this algorithm. However the Dolphin
regains its honor during the traverse itself.

One last note. It would be interesting to know how
.............. ,-- --.;_k._. ,.,,..,,-_",-,,.-,,_ ,_,h_,'_ _v"i i'_-_n in IQLISP.

well tnl_ dztjur A_.,,,,, ,,,,.,-j,, ,- i-,_, ,

since this language does not contain the record as a data

type. Unfortunately, Gabriel does not include IQLISP in
his candidate languages. (IQLISP is a dialect intended for

personal computers.)

Database. This example is motivated by the likely use

of databases in the Space Station, and the setting up of

sophisticated query languages capable Of making subtle
inferences. First we must set up relations_ these might

be arrays. But, since keys are an integral part of a

database, relations would be better represented by records

of records.

Next we want to add the four fundamental operations of

selection, projection, union and join. Then we should ask
both direct queries_ and indirect queries phrased as sets of

implicit statements. See [Gray] for possibly some sample

databases and queries.

Exper t . Many workers in automation believe that the

most likely area of this subject to be useful to the Space

Station will be expert systems. How useful will LISP and

Prolog be for these? We propose three small programs to test

this. They are Browse, LOX and Power.

Browse. This program is well summarized by 8abriel_

p. 139: "This program is intended to perform many of the

operations that a simple expert system might perform.

There is a simple pattern matcher that uses the form of a

symbol to determine its role within a patternp and the data
base of _units' or_frames ' is implemented as property lists.

In some ways this benchmark duplicates some of the

operations in Boyer, but it is designed to perform a mixture

oT operations in proportions more nearly like those in real

expert systems."

We note that although the actual program only takes

three pages of LISP coder this is tight code, and it takes
almost three pages to describe what is does in English.

Thus we refer the reader to [Gab] for details.

The meter counting the number of operations invoked and
the raw times read diTferently from the scores of most of

XXVII-19

the other programs of Gabriel. For example, testing for
equality in various guises is the second most frequently
used operation (list manipulation is the first, naturally).
Because of this, perhaps, the IBM 3081 outshone the Cray by
about 30%.

LOX. The apparatus for feeding liquid oxygen to the
combustion chambers from its storage tank is an extremely
complex system of piping, pumps, and premixers. As pure
oxygen, even in liquid form, is extremely corrosive and
explosive, it is essential to have a method of quickly
diagnosing faults detected by sensors. To this end the LOX
e_pert system was designed at Kennnedy Space Center (see
[NAR, p. 27].

What is proposed here in this report is a miniature of
this system to test on different dialects of LISP and
Prolog.

PoHer. The Space Station will require an extensive

system for power generation and distribution. Several

voltages will be needed, as well as both direct and

alternating current. We can expect to see fluctuations in

both generation and consumption, and must also plan for

various kinds of failures, including outage. The need

for intelligent and quick load shedding is obvious.

David Weeks, in this laboratory at Marshall S.F.C., is

directing the construction of a model to simulate various

aspects of the power plant for the Space Station. Again,

it is proposed to code a miniature version of this model in

order to compare various versions of the languages which

might be used to write an expert system.

Closinq Comments. We end this section with a few

comments about Richard Gabriel's book, which we have leaned

on so heavily. As the first book to publish benchmarks and

their run times for Lisp dialects, it is clearly a landmark.

Nothing has yet been done for Prolog; nor are there yet any
quantitative comparisons of the two languages. Certainly,

more such work should be done, and Gabriel's book will serve

well as a base for any future efforts.

With this said, it must seem to the reader to be

carping to criticize certain aspects of his effort. But
this book is difficult to read, even allowing for the great

amount of detail presented. Continually changing acronyms

and nonstandard abbreviations made it hard for one to be

XXVII-20

sure of what was meant, and this slowed a person down.
However, this aspect alone could have been surmounted. But
there were also real inconsistencies; and so it was hard to

trace down their source_ and I was left puzzled on quite a

few o÷ the aetaiis. A _- - :,-._ '...._UUU, _ua , -...........

the book better.

As I understand it_ the main selling point of languages

such as LISP and Prolog is that they're are supposed to be

easier to program, and the finished code is also supposed to

be easier to debug_ maintain and modify. Therefore, as

remarked earlier, it is always surprising whenever one finds
code written in one of these languages which is baroque and

both hard to decipher and modify. A good example_ as

remarked earlier_ was the lack of appropriate data _.._==_,__in

the program Triangle. In general_ one ought to be able to

code in a fairly direct fashion and close to the spirit and

structure of the original problem domain. And many

high-order procedural languages are coming closer and closer
to this ideal. So it behooves programmers in nonprocedural

languages to do likewise.

OTHER CONSIDERATIONS

This chapter is devoted to gathering together a number
of loose ends. We talk about benchmarks in robotics and

how to observe programmers_ then draw up desirable

characteristics which programming languages should possessp

and finally discuss how Ada may fit into the picture.

Examples from Robotics. We should have included in

the proposed benchmarks some from the field of robotics,
since extensive use of these creatures will be made in the

Space Station. For having failed to do this, we plead

ignorance of where to begin, lack of time to pursue itm and

lack of space to report it. This should certainly be done

in the future.

Observinq Proqrammers. This is one of the methods

for comparing programming languages recommended in my report

of last year. This is expensive if done alone. But it
should be cheap if done in conjunction with the development

of the code for the algorithms proposed in the previous

section.

XXVII-21

Ot,b,_r Characteristics. Besides speed, ease of

programming, and suitability for the tasks at hand, there

are many other desirable characteristics of a programming

language which have been proposed. We turn to Barbara

Lipson's list, as reported by [Horl, pp. 35-40]. The
characteristic is stated, and then sometimes it is followed

by a comment or two applicable to the languages we are
studying.

I. A well-defined syntactic and semantic description.

The pure versions of LISP and Prolog both have this since

they have simple, theoretical bases. In their applied

forms, with many mixed features, particularly LISP, this is
not so clear.

2. Reliability.
-3. Fast translation.

4. Efficient object code.

5. Independence of features

6. Machine independence. This seems as far away as

ever, particular for nonprocedural languages, where

machine-dependent dialects abound.

7. Provability. This is of dubious value, since it

requires automatic theorem proving, which is one the things

we are trvino to mrrnmpl i_h wifh _h=== 1 =_,,=._=c h,,_ _._

not been accomplished yet.

8. Generality. This means that there should be just

a few basic concepts. This is true only for the pure

versions of LISP and Prolog.

9. Consistency with commonly used notations. One can

only ask why nonstandard notations were chosen for some

symbols commonly accepted and long used in mathematics and

logic.
10. Subsets. It's true that subsets can be used in

these languages, but only at the risk of writing inefficient

programs.
11. Uniformity. Similar things should have similar

meanings.

12. Extensibility. Certainly true for common LISP

with its ability to use incorporate routines from other

languages.

Ad___aa. So far we have said little about how Ada will

fit in with this special purposes languages. Several

questions arise: how much general, indirect recursiveness

does Ada support; how good is Ada for tasks in automation

and robotics; and how fast would it be for such tasks.

Certainly the standardi, zation of Ada, its multitasking

capabilities and the software development environments being
created are al]. good reasons fo__ seriously considering it°

XXVI1-0___

There is increasing evidence [SM] that the best route
to programming automation in the Space Station is to develop
algorithms and programs in LISP or Prolog, and then to use
Ada as a production language. We mean here that the
peculiarities of the candidates languages should be taken
into account. LISP and Prolog are stimulating for research
and excellent for prototypes. Ada may well be better for
the final code and implementation.

CONCLUSIONS and RECOMMENDATIONS

1. There will be limited use for the techniques of

artificial intelligence in the Space Station. Identify and

isolate those subsystems amenable to this method of

programming.

2. In anticipation of some use, the benchmarks

outlined in this report should be coded, and run in a

limited number of dialects of LISP and Prolog. Additional

routines should be created to test capabilities in robotics.

In the process, programmers should be observed to see which

dialects are easiest to use in practice.

c.... _,,=1 tasks in the _n_= Station _,h=r=

inference techniques are warranted, develop prototypes in

LISP or Prolog, but after development, transfer the

algorithms gracefully to Ada, where speed, reliability and

maintenance are important.

4. Identify those enhancements of Ada which will make
this transition easier.

5. Even when writing programs in Ada from the outset,

isolate data from procedures as much as possible. Be
broad-minded about what is considered data. There is much

in Ada to encourage this; but special effort is required to

reap the benefits of reusable software. Also, make full

use in Ada of the ability to create new data types so as to

make the code transparent.

6. Design and study new nonprocedural languages based

on logical and mathematical principles significantly
different from those of the predicate and lambda calculi.

7. Compare languages theoretical in an effort to

understand the speed and space limitations inherent in

nonprocedural languages. The languages to be compared

would include not only LISP and Prolog, but also any new

XXVII-23

languages thought of in connection with item 6 above.
Hopefully thins will lead to new and better interpreters_
insuring convergence in a timely manner.

A Final Quote

We end with a quote, which the reader is free to
interpret either: as a slur on nonprocedural algorithms

which take too long to end; as a comment by a faculty fellow

on the anguish of getting a summer project finished in ten

weeks; or, more nobly, as a sigh of empathy for NASA_s
travails in meeting tight launch schedules.

the that runs against Time has an antagonist
not subject to casualties. _

Samuel Johnson

XXVII-24

REFERENCES

[AART2] Advanced Technology Advisory Committee.

Advancing Automation and Robotics Technology for the Space

Station and for the U.S. Economy. Progress Report 2 --

October 1985 through March 1986. NASA Technical Memorandum

88785. Submitted to U.S. Congress, April 1, 1986.

[AMS] American Mathematical Society.

Mathematical Theorem Proving. 1984.

Symposium on

[ARP] Automation and Robotics Panel. Automation and

Robotics for the National Space Program. Administered by
California Space Institute, University of California at San

Diego. NASA Grant NAGW629, Cal Space Report CSI/85-01.
Feb. 25, 1985.

[Bolt] J. David Bolter. Artificial Intelligence.

Daedalus, Summer 1984, pp. 1-18.

[Camp] J. A. Campbell, ed.

Ellis Horwood, 1984.
Implementations of Prolog.

[Curry] Haskell B. Curry.

Holland, 1972.

Combinatory Logic. IqqL,_! I..i I

[DDa] Hubert L. Dreyfus; Stuart E. Dreyfus. Why

computers may never think like people. Technology RevieN,

89:1, (Jan. 1986). pp. 42-61.

[DDb] Hubert L. Drey_us_ Stuart E. Dreyfus. Mind over

Machine -- The PoNer o÷ Human Intuition and Expertise in the

Era of the Computer. Free Press, 198&.

[Firs] Oscar Firschein, et al. NASA Space Station

Automation: AI-based Technology RevieN. Administered by SRI

International, prepared for NASA-Ames Research Center,
Contract No. NAS2-11864. March 1985.

[FM] Edward A. Feigenbaum; Pamela McCorduck. The

Fifth Seneration -- Artificial Intelligence and Japan's

Computer Challenge to the World. Addison-Wesley, 1983.

[Gab] Richard P. Gabriel. Performance and Evaluation

of Lisp Systems. MIT Press, 1985.

XXVII-25

[GB] J. Glasgow & R. Browse. Programming languages
for artificial intelligence. Camp. Math. Applic., 11:5 (May

'85), pp.431-448.

[Gray] Richard M. D. Gray.
Databases. Ellis Horwood, 1984.

Logic, Algebra and

[HC] D. Harel & A. K. Chandra. Horn clause queries

and generalizations. J. Logic Program., 2:1 (Apr. 1985),

pp. 1-15.

[Haw] F. M. Hawrusik. Extension of the pebble game

for LISP-like programs. 219 pp. Diss. Abst. Int., Pt B --

Sci. & Eng., vol. 45, no. 2. Aug. 1984.

[Knoe] Arthur Knoebel. Analysis of High-order

Languages for Use on Space Station Application Software, in

Research Reports -- 1985 NASA/ASEE Summer Faculty FelloNship

Program. NASA CR-178709, Jan. 1986.

[Horl] Ellis Horowitz. Fundamentals of Programming

Languages, 2nd edition. Computer Science Press, 1984.

[Line] J. Robert Lineback. LiSP processor chips point

to desktop AI. Electronics, March 31, 1986, pp. 17,21.

[Mart] Gary R. Martins. Overselling of expert

systems. Oatamation, 30:18 (Nov. 1984), pp. 76, 78+.

[Mend] Elliott Mendelson. Introduction to

Mathematical Logic, 2nd ed. Van Nostrand, 1979.

[NAR] Advanced Technology Advisory Committee. NASA
Automation and Robotics -- Information Exchange Norkshop

Proceedings, 2 vols. Held at Lyndon B. Johnson Space

Center, Houston, Texas, May 13-17, 1985. JSC Artificial and

Information Sciences Office, June 5, 1985.

[SM] Richard L. Schwartz; P. M. Melliar-Smith. On the

Suitability of Ada for Artificial Intelligence Applications.

SRI International. July 1980. AD A090790.

[Whit] Daniel E. Whitney. Real robots do need jigs.

Harvard Business Review, May-June 1986, pp. 110-116.

XXVII-26

